See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2468446
ACLP: Flexible Solutions to Complex Problems

Article in Lecture Notes in Computer Science - July 2000

Source: CiteSeer

CITATIONS READS
17 140
2 authors:
% Antonis C. Kakas s . Costas Mourlas
i
¥ University of Cyprus ! National and Kapodistrian University of Athens
255 PUBLICATIONS 6,221 CITATIONS 124 PUBLICATIONS 923 CITATIONS
SEE PROFILE SEE PROFILE

All content following this page was uploaded by Antonis C. Kakas on 30 May 2013.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/2468446_ACLP_Flexible_Solutions_to_Complex_Problems?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2468446_ACLP_Flexible_Solutions_to_Complex_Problems?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Cyprus?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costas-Mourlas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costas-Mourlas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-and-Kapodistrian-University-of-Athens?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costas-Mourlas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_10&_esc=publicationCoverPdf

ACLP: Flexible Solutions to Complex Problems

A.C. Kakas and C. Mourlas

Department of Computer Science, University of Cyprus
75 Kallipoleos str., CY-1678 Nicosia, Cyprus
{antonis, mourlas}@turing.cs.ucy.ac.cy

Abstract. In this paper we present a new system for non-monotonic
reasoning performed using abduction. The system, called ACLP, is a
programming language based on the framework of Abductive and Con-
straint Logic Programming (ACLP) which integrates abduction and con-
straint solving in Logic Programming. It is build on top of the ECLiPSe
language for Constraint Logic Programming (CLP) interfacing (and ex-
ploiting) appropriately the non-monotonic reasoning of abduction with
the specialized constraint solving of the CLP language. ACLP is intended
as a programming language that extends the underlying CLP language in
which using NMR (in this case abduction) together with constraint solv-
ing it is possible to develop flexible solutions that are computationally
viable in the real-life domain.

We present the basic theory of ACLP that underlies the system, the main
features of the ACLP language and how it can be used when developing
applications. We then report on some experiments performed in order to
test the cost of the use of the ACLP system as compared with the direct
use of the (lower level) constraint solving framework of CLP on which
this is build. These experiments provide evidence that the non-monotonic
framework of ACLP does not compromise significantly the computational
efficiency of the solutions thus confirming the computational viability
of the framework for the development of flexible solutions to real-life
applications.

1 Introduction

Non-monotonicity enhances the expressive power of a representation framework
allowing high-level representations of problems close to their natural specifica-
tion. The modeling of the problems is thus more direct, modular and faithful.
As a result of this, many problems in Artificial Intelligence and other areas
of computer science have been easily captured within different non-monotonic
frameworks. Despite this clear need of non-monotonicity the number of real-life
applications of non-monotonic reasoning is very small. One of the main reasons
for this is the relative computational inefficiency of solutions based on non-
monotonic representations.

It has been argued [1], [2], [3] that one way to address this problem is to
view the role of non-monotonic reasoning (NMR) as that of providing an ef-
fective automatic reduction of high-level problem representations and goals to
lower level computational problems, of a general problem independent form,

whose solutions would solve the original high-level problem goal. It is thus pro-
posed that NMR should be appropriately integrated with specialized constraint
solvers for lower-level problem independent domain constraints. Such integrated
frameworks will be able to offer solutions of application problems that (i) can
effectively combine high-level representation problems with the efficiency of the
specialized constraint solving to produce computationally viable solutions and
(ii) offer a high degree of flexibility in the development of the applications able
to respond to their specialized and dynamically changing needs.

In this paper, we present a new system for non-monotonic reasoning per-
formed using abduction. The system, called ACLP, is a programming language
based on the framework of Abductive and Constraint Logic Programming (ACLP)
[2] which integrates abduction and constraint solving in Logic Programming. It
is build on top of the ECLiPSe language [6] for Constraint Logic Programming
(CLP) interfacing (and exploiting) appropriately the non-monotonic reasoning
of abduction with the specialized constraint solving of the CLP language. The
intended use of ACLP system is not to solve computational hard problems of
NMR but rather to offer a modeling environment that supports NMR, for the
development of modular and flexible applications. ACLP is therefore intended
as a programming language that extends the underlying CLP language in which
using NMR (in this case abduction) together with constraint solving it is pos-
sible to develop incrementally flexible solutions that are computationally viable
in the real-life domain.

Abductive reasoning has been shown to be appropriate for formulating dif-
ferent application problems in Al e.g. Diagnosis, Planning, Natural Language
Understanding and others such as Database Updates. Also abduction has been
proved suitable for capturing logically different kinds of inferences such as ex-
planation, non- monotonic and default reasoning, knowledge assimilation and
belief revision (see the recent surveys [4, 5]). This versatility of abduction as a
reasoning paradigm together with the high level expressivity that it allows are
the primary reasons for its success in formulating so many different problems.
We therefore take it as given that the ACLP framework and system are appro-
priate for tackling NMR, problems and applications and concentrate here on the
issue of the (relative) computational effectiveness of the system.

Two groups of experiments have been performed with ACLP. One to test
the cost of the use of the ACLP system as compared with the direct use of
the (lower level) constraint solving framework of CLP on which ACLP is build.
The other group of experiments aimed to illustrate the high level expressivity of
ACLP and the flexibility that it can provide in adapting a program in ACLP to
changes in the problem definition. These experiments provide evidence that the
non-monotonic framework of ACLP does not compromise significantly the com-
putational efficiency of the solutions thus confirming the computational viability
of the framework for the development of flexible real-life applications.

In the next section we present the theoretical foundations of ACLP and its

main computational model. In section 3, we briefly discuss its implementation
and its main features when used as a programming language for the development

of applications. In section 4, we present the experiments carried out to test the
viability and usefulness of ACLP.

2 The ACLP framework

The ACLP system is designed as a programming language based on the ACLP
framework of integrating Abductive and Constraint Logic Programming [2]. This
integration of Abductive Logic Programming (ALP) and Constraint Logic Pro-
gramming (CLP) is based on the view that they can be both understood within
the same conceptual framework of hypothetical reasoning. The satisfaction of a
goal, in either framework, is understood conditionally on a set of hypotheses,
abducible assumptions for ALP or constraints for CLP, which is satisfiable un-
der a special theory. For the case of ALP this theory is a set of problem specific
integrity constraints whereas for the case of CLP this is a built-in problem in-
dependent constraint theory. An important observation when integrating these
two frameworks is that the interaction between these two types of hypotheses
is non-trivial and indeed they can be strongly correlated to each other. For an
abducible hypothesis 3Xab(X) we may also require that the variable(s) X is
restricted through some set C' of constraints in the constraint domain of CLP. In
effect, the hypothesis that we need is 3X (ab(X), C(X)) , showing the non-trivial
interaction of the two frameworks.

2.1 The Language of ACLP

Given an underlying framework of C' L P(R), an abductive theory or program

in ACLP is a triple (P, A, IC') where:

— P is a constraint logic program in C'LP(R) consisting of rules of the form
po(to) — e1(u1), ... en(un)|lpr(th), - -, pm(tm)t where p; are predicate sym-
bols, ¢; are constraints in the domain R and u;,t; are terms of R.

— A is the set of abducible predicates, different from the constraints in R.

— IC 1s a set of integrity constraints, which are first order formulae over the

language of CLP(R).

A goal, GG, has the same form as the body of a program rule whose variables are
as usual understood as existentially quantified.

An ACLP theory or program thus contains three types of predicates: (i)
ordinary predicates as in standard LP, (ii) constraint predicates as in C'LP and
(iii) abducible predicates as in ALP. The abducible predicates are normally not
defined in the program and any knowledge about them is represented either
explicitly or implicitly in the integrity constraints /C'.

! Here the symbol || is used to separate the constraint conditions from the program
predicate conditions in the conjunction of the body of the rule.

The abducibles are seen as high-level answer holders for goals (or queries) to
our program carrying their solutions. An answer, A, for a goal, GG, is a set of
assumptions of the form:

— ab(d), where ab € A and d € domain of R.
— 3AX(ab1(X), ..., aby(X),C(X)), where aby,...,ab, € A and C(X) is a set
of CLP(R) constraints.

The integrity constraints express high-level properties that must hold by any
set of abducible assumptions or in other words by any solution (or answer) of
a goal for this to be accepted. In this way, using the integrity constraints we
(the user) can express requirements of the problem in an explicit and high-level
direct way. More importantly this means that we can separate (isolate) the issue
of validity of the solution in the integrity constraints IC' from other issues of
the problem representation (such as the basic structure of the problem or the
quality of the solution) in the program P. This separation can be very useful in
the overall development of an application.

2.2 Declarative Non-monotonic Semantics of ACLP

The (non-monotonic) semantics of ACLP is inherited from that of ALP and
abduction. An answer for a goal GG is correct if it forms an abductive explanation
for G. Given a theory (P, A, IC) and a goal G, an answer A is a solution of G
iff there exists at least one consistent grounding of A (in R) and for any such

grounding (labelling) , A, :

— PUA, entails G, , and
— PUA, satisfies the IC

where Gy denotes a corresponding grounding of the goal G.

Due to lack of space we can not elaborate here on the details of the corre-
sponding grounding and the formal semantics of the integrity constraints (see
[2]). Informally, we can consider the integrity constraints as sentences that must
be entailed by the program together with the abductive hypotheses (P U A,) for
A, to be a valid set of hypotheses.

2.3 Computational model of ACLP

A computation in the ACLP framework consists of two interleaving phases,
called abductive and consistency phases. In the abductive phase, hypotheses on
the abducible predicates are generated, by reducing the goals, and added to a
set of abductive assumptions A. The consistency phase checks whether these
hypotheses are an allowed addition to the assumption set in the sense that the
integrity constraints can remain satisfied by this addition. Together with this
assumption set a constraint store C' of C'LP constraints is also generated. This
constraint store can grow in both phases of the computation provided that it
remains satisfiable throughout the computation. A constraint solver is used to

decide on the satisfiability of this store when necessary. The satisfiability of C'
in turn affects back the overall abductive computation. The following simple
example illustrates the ACLP computation.

Fzample 1. Consider the following ACLP theory and goal Gy:

P ={p(X) = X > 2] ¢(X),a(X)
q(X) = X >4, X <10 || I},
10 ={~(X > 38 a(X))},
Go = p(X), where “a” is the only abducible predicate.

In an abductive phase, the initial goal Gy will resolve against the first and
second clauses to obtain the new goal G; = X > 2, X > 4, X < 10 || a(X).
We then proceed to abduce 3Xa(X) by adding a(x) (x here is a name for this
existential variable) to the assumption set Ag. The initially empty constraint
store Cy is extended to the set {& > 2,2 > 4, < 10} . A consistency phase
is then invoked in order to check the consistency of the assumption a(x). This
will resolve with the integrity constraint in IC' to give the goal (# > 8 || []).
This goal must fail. As there are no literals left in the goal, the only way to
fail is to make the local set of constraints {x > 8} unsatisfiable. This is done
by assuming # < 8 and adding it to the global constraint store Cj. The new
constraint store Cy = {# > 2,2 > 4,2 < 10,2 < 8} remains satisfiable and
reduces to Ci = {# > 4,2 < 8}. Therefore the computation succeeds with the
final result 3X (a(X), X > 4, X < 8), which is a solution to the initial goal Gl.

In this example the constraint solver of C'LP is used to check for the satis-
fiability of Cy and C', solve the problem of making the local set of constraints
{x > 8} unsatisfiable and to reduce C; to C’i. In general, the interface of
abduction to the CLP(R) specialized constraint solver is as follows.

— check the satisfiability of and reduce (or solve) the constraint store at each
step in the abductive phase

— in a consistency phase expand the constraint store in a way such that (i) it
remains satisfiable and (ii) other constraints local to the consistency phase
become unsatisfiable.

The constraint solver i1s essentially a black box, transparent to the abductive
theory, that is consulted during the overall abductive computation with the
two specific tasks given above. Note that the first task is in fact the standard
interface to the constraints solver in C'LP. Note also that in the second task
the constraint solver is used actively towards satisfying the top level goal by
expanding the constraint store.

Effectively, the overall pattern of computation can be seen as a reduction
through abductive reasoning of the high level goal and abductive theory to a set
of domain constraints of the underlying C'LP. From the perpective of the C'LP
the domain constraints that are needed to solve the high-level goal are generated
dynamicaly through an unfolding of the "relevant” part of the program P and
integrity constraints /C. Abduction provides the high-level ”pattern” of the

solution whereas the constraint solver computes the more specific but equally
important details of the solution.

3 Language Features and Implementation

As descibed in the previous section a program in ACLP has three modules:

Module 1: Contains a standard ECLiPSe program

— Module 2: Constains a set of declarations of abducible predicates in the
form of ECLiPSe facts as: abducible_predicate(predicate_name/arity).
Module 3: constains a set of integrity constraints written as ECLiPSe pro-
gram facts in the form: constraint((head : — body)).

In the current implementation of ACLP the integrity constraints are re-
stricted to be Horn clauses where the head could be empty and where at least one
abducible condition must appear in the body of the constraint. Once all three
modules have been loaded the program is executed by calling at the ECLiPSe
level: aclp-solve(goal, initial-hypotheses, output-variable)

— goal is an ordinary ECLiPSe goal,
— initial-hypotheses is a list of abducible hypotheses, and
— output-variable is an ECLiPSe variable.

The output-variable returns a list of abducible hypotheses, with their domain
variables instantiated to specific values in their domain,containing the initial-
hypotheses and which is a solution of the goal. Normally, the list of initial-
hypotheses i1s empty but this is not necessary as we may want to find solutions
to a goal that necessarily contain some hypotheses.

3.1 ACLP Applications

In developing an application with ACLP an important feature of the ACLP lan-
guage 1is the fact that we can define for each problem its own problem specific
abducibles. These play the important role of answer holders which have higher
semantic meaning than simply that of a logical variable (the usual answer holder
in LP and CLP). This ability to have high-level answer holders helps in develop-
ing high-level and flexible programs as we can use them directly to manipulate
the solution and represent explicitly properties of the solution.

Another important feature of the ACLP language 1s the separation it allows
between the program P and the integrity constraints IC'. The general problem
representation can be divided in two main parts, the basic model of the problem
in P and the representation (specification) of what constitutes a valid solution
in the integrity constraints IC'.

Separating the issue of validity in the constraints from other issues (e.g. qual-
ity of a solution) in the model can facilitate the development of applications. Tt
can help in an easier and more modular development especially when we want

to make the model more detailed or to change the requirements on the solution.
The fact that these two tasks are now decoupled and can be carried out inde-
pendently is very beneficial in the overall development of an application. It is
possible to incrementally refine the model to improve the quality of the solution
without affecting its validity (which is always ensured by the integrity constraints
in IC). In addition, we can experiment with different design alternatives in the
modeling which may improve the quality of the solutions. For example, opti-
mality algorithms can be included in the model of the problem. This gives us
the possibility of affecting the search for the solution in order to increase the
computational effectiveness of the application system. Moreover, it is possible
to exploit natural structures of the application problem in order to build in P a
more informed model of the problem that again can result in improvements on
the effectiveness of the system. Further details and discussion on this property
of separating the issue of validity from that of the optimality of the solution in
the context of schedulling applications can be found in [7].

3.2 Implementation

The current version of the ACLP system has been implemented on top of the
ECLiPSe language as a meta-interpreter using explicitly the low-level constraint
solver that handles constraints over finite domains (integer and atomic elements).
The most difficult task of the meta-interpreter is the management of the two
interleaving phases of abduction and consistency during a computation in the
ACLP framework. Since constraints can be imposed on domain variables not only
during the generation of an abducible assumption but also during consistency
checking, there is a need for (i) dynamic generation and management of low-level
CLP constraints (ii) management of the domain variables.

The implementation contains a module for negating the CLP constraints
found in the body of an integrity constraint and sending them to the ECLiPSe
constraint solver to be satisfied together with the other constraints already set.
A binding environment is also constructed during the execution of the meta-
interpreter where the domain variable bindings and the constraints attached to
these variables are stored. An explicit binding mechanism is implemented to
handle the attachement of new constraints to variables and the linking between
different constraints that are imposed on the same domain variable at different
parts of the computation.

4 Experiments

In this section, we present some experiments that we have carried out in order
to test the computational viability of the ACLP system and to illustrate its high
level expressivity and flexibility.

These experiments rest on the premise that ACLP will be computationally
viable for real-life applications if its performance is comparable with that of the
underlying CLP language or in other words if it does not degrade significantly

the performance of the underlying language (which we assume can be used for
real-life applications). For this purpose we have selected some standard com-
putationally intensive problems and compared the performance of ACLP with
the performance of the underlying language of ECLiPSe on the same problems.
We emphasize that these experiments are designed to test explicitly the com-
putational effectiveness of ACLP, in the sense mentioned above, and not its
suitability for solving representing NMR application problems such as problems
of diagnosis, planning etc which we take as given.

4.1 Increasing the Size of the Problem

The first set of experiments designed to test the computational viability of the
proposed system, are based on the job shop scheduling problem. In general, we
need to schedule n jobs on m machines where each job is a request for the
scheduling of a set of tasks with a particular order. Each job has a specified
release time after which its execution can start and has to complete its work
before a specified deadline. In addition, the schedule must satisfy other basic
constraints such as the precedence constraints that define in which order the
different tasks of a job should be carried out and the capacity constraints that
prevent resources from being allocated to more tasks than they can process at one
time (resource capacity). Other constraints specific to the particular application
may be needed, making the problem more difficult to solve.

In ACLP the precedence and resource capacity constraints can be represented
with the following integrity constraints in /C"

constraint((: —start(J,T1,R1,S1), T2 is T1 — 1,start(J,T2,R2,S2
duration(T2,D2),S1# < (52 +D2))
constraint((decoupled(T1,S1,T2,52): —start(J1,T1,R,S1
start(J2,T2,R,52),T1 = \ = T2)

bl

bl

e e

where start(J, T, R, S) denotes that task T of job J starts execution at time S
on resource (machine) R, and is an abducible predicate. The program P of the
ACLP job-shop scheduling theory is a simple representation of the basic features
of the problem that generates the abductive hypotheses start(J, T, R, S) for each
job and task from some top level goal. It also contains the definition of auxiliary
predicates that are used in the integrity constraints e.g. decoupled/4.

The core scheduling problem that was used in our experiments has 20 jobs
with 5 tasks each, (hence a total of 100 tasks) sharing 10 resources. It was
constructed from the set of problems defined in [8] by putting together two of
these problems.

The second set of our experiments is based on the well-known N gqueens
puzzle, where we have the requirement to place N queens on a N-by-N rectangular
board so that no two queens are on the same horizontal, vertical or diagonal line.
The ACLP program contains the integrity constraint:

constraint((: —pos(R1,C1), pos(R2,C2),attack(R1,C1,R2,C2))).

with pos(Row, Column) an abducible predicate and where the definition of
attack is the usual one given in the program P. The full ACLP programs can
be found in an associated technical report.

The ACLP implementations of these problems were tested against corre-
sponding implementations directly in ECLiPSe.

0
300
25—
250 —
20 —
o 2004 -e— ECLiPSe 2
g —&— ACLP % 15 —
g 150 E
IS [~
100 10 —
50 | 5
0 » 0
6 8 1 12 0
Board Size (N) Board Size (N)
Fig.1. All solutions, N-queens Fig.2. One solution, N-queens
problem using ECLiPSe and ACLP problem using ECLiPSe and ACLP

YT T T T T T T
0 2 4 6 8 10 12 14 16 18 20

Number of Jobs (N)

Fig. 3. One solution, job shop scheduling problem using ECLiPSe and ACLP

Figure 3 displays the performance of these two implementations with respect
to the size of the job shop problem ranging from 1 job (5 tasks) to 20 jobs (100
tasks). This figure indicates that the performance of the ACLP implementation
is comparable with that of ECLiPSe, since in every size of the problem, the
ECLiPSe implementation is about two times faster than the one on ACLP. This is
a constant factor of difference that does not increase with the size of the problem.
It is worth noting here that the ACLP system is built on top of ECLiPSe and
consequently a big fraction of the performance loss is due to the penalty paid to
run the code of the meta-interpreter. As we will also see in the next subsection
the constraints are expressed in a form closely to their natural specification in
the ACLP programs whereas more effort was necessary for encoding the same
constraints directly in ECLiPSe.

Similar results were taken from the execution of the N-queens problem, where
only one solution for the placement of the queens was required from both the

implementations. We compared the execution times for different board sizes
ranging from 7 to 115. Figure 2 presents the results where we can see that ACLP
is still performing with times comparable to the ones achieved by the ECLiPSe
implementation. This different is a constant factor of 4 to 5 times faster for
ECLiPSe.

Finally, Figure 1 displays the run-time costs of the N-queens problem, where
all solutions are required for different board sizes ranging from seven to twelve.
The performance of the ACLP, as it can be observed follows closely the perfor-
mance of the ECLiPSe implementation.

The main difference between an ACLP based implementation and a standard
CLP implementation is concentrated on the way the constraints are expressed.
In the ACLP system, constraints can be represented directly from its natural
specification in a declarative statement. On the contrary, using a standard CLP
system, it is first necessary to extract the constraints from the problem specifi-
cation, and then to formulate this set of constraints appropriately. In the ACLP
framework this (programming) time consuming process has been reduced consid-
erable. The penalty paid concerning the performance of the system is due to the
fact that now during the computation, the low level constraints are constructed
from the higher level integrity constraints, formulated to a set of constraint goals
and then transmitted to the underlying specialized constraint solver of ECLiPSe.

4.2 Increasing the Complexity of the Problem

In order to illustrate the expressive power of the proposed system for the devel-
opment of complex applications, we considered the addition of new constraints
to the job shop scheduling problem. We studied the ability of the ACLP system
to represent these constraints and compared both implementations (the ACLP
and the ECLiPSe version) not only according to their performance results but
also in their ability to represent these constraints and their flexibility in changing
the problem requirements.

Assume that we are given an extra requirement on the initial core job shop
scheduling problem which says that: for a specific task 7y, if this starts after a
specific time ¢y then this task has to be executed last (i.e. no other task can
start execution after the task 7). This is represented in our system by the single
integrity constraint (1) (for the specific case of 7y = 14 and t; = 21)

constraint((: —start(1, 14,R0,S0), start(J, T,R,S), T=\ = 14,
SO# > 21,8# >50)). (1)

This constraint was implemented also in the ECLiPSe language. The perfor-
mance of each approach is presented in Table 1 on the second column named
Constrl, whereas the first column presents the results on the underlying core
problem of a fixed size . The ACLP version is still slower than the ECLiPSe
version, but without any significant computation overhead.

An alternative new requirement to the problem that was examined states
that: after the end of a specific task 7 and for a specific resource r1, no other

task can start execution on that resource before the end of a time interval ¢;.
This is represented in the ACLP system by the single integrity constraint (2),
(for the specific case of =23, r; = 1 and ¢; =20). The performance of the two
implementations is shown in the column named C'onstr2 of the Table 1.

constraint((: —start(J, T, 1,S), start(2,23,1,5d),duration(23,Dd),
S# > Sd,S# < Sd +Dd + 20)). (2)

We must point out that in both these cases of adding the constraints (1) and
(2) a considerable programming effort was required in order to achieve these
execution times by ECLiPSe.

Consider now the requirement that if at least two jobs start their execution
in a specific time interval (Z,t.) using a specific resource r; , then no other
task can start execution in the interval (¢.,t. +t4). The resource r; must have a
rest period. This is represented in ACLP by the integrity constraint (3), where
ri =0, (t5,t) = (0,32) and ¢4 =10. The execution time of the ACLP system is
shown in the column named Constr3 of Table 1. Due to the much needed effort
to implement this directly in ECLiPSe we did not carry this out!

constraint((: —start(J,T,0,S),start(J1,T1,0,51), start(J2,T2,0,52),
T1 =\ = T2,04# < S1,S1# < 0 + 32,
0# < S2,82# < 0+ 32,S# > 32,S# < 32+ 10.)). (3)

Assume now that we are given a new requirement on the initial problem
which says that: if any task 7; is using the resource r; then the related with ;
resource r; has to be idle till the end of ;. This is represented in ACLP by the
integrity constraint (4) and the performance of its implementation is presented
in Table 1. Again this constraint was not implemented directly in ECLiPSe.

constraint((: —start(J1,T1,R1,S1),start(J2,T2,R2,S2), T1 = \ = T2,
related(R2,R1),duration(T2,D),S2# < S1,S1# <= S2+D)). (4)

The previous constraint required that no task could start on resource R1 at
a time when the related resource R2 is busy. Consider now the “dual” constraint
requiring that no task can begin on resource R1 at a time when the related
resource R2 is idle. In other words, if a task starts at time 7" on resource Rl
then the related resource R2 must be working at this time T". This requirement
is represented in ACLP by the following integrity constraint (5):

constraint((working(R2,S): —start(J,T,R1,S),related(R2,R1))). (H)
where working/2 is defined in the program of the ACLP theory as follows:

working(R,S) :-
select_task(Ja,Ta,R),
start(Ja,Ta,R,Sa),
duration(Ta,Da),
S #> Sa, S #< Sa + Da.

Performance Measurements (in secs)
System |Standard Configuration|Constrl|Constr2|Constr3|Constrd|Constrb
ACLP 0.90 1.04 0.94 1.34 3.45 1.62
ECL*PS* 0.42 0.68 0.42 * * *

Table 1. Performance Measurements as the Complexity of the Problem Increases

The effect of this constraint is that whenever a task 7" 1s scheduled on resource
R1 the system dynamically schedules in the consistency phase of task 7" another
task T'a on the related resource R2 to ensure that this constraint is satisfied.
The execution time of this constraint is shown in the last column of Table 1.
Our conclusions based on these results can be summarized as follows:

1. The performance of the ACLP system is comparable with that of the un-
derlying CLP language. Much of the execution time of a program written
in ACLP is spend for the run of the meta-interpreter code. As a result, a
full low-level implementation of the proposed system seems a promising and
computational effective programming environment.

2. The expressive power of ACLP is higher than that of a standard CLP system,
with greater flexibility for problems with changing specifications.

We note that as with ECLiPSe and other CLP languages, the performance
of the ACLP system can sometimes be sensitive to the order in which the con-
straints are written (and hence to the order which the meta-interpreter considers
these constraints).

Finally, we also mention that a simpler implementation of ACLP that does
not exploit fully the integration of NMR, and constraint solving has already been
used to develop two real-life applications: a university timetabling problem and
an airline crew-rostering problem [7].

References

1. Ginsberg, M.L. : Do Computers Need Common Sense?. Proceedings of the Fifth
International Conference on Knowledge Representation, 1996.

2. Kakas, A.C., Michael, A.. : Integrating abductive and constraint logic programming.
Procedings of the Twelfth International Conference on Logic Programming, Tokyo
1995.

3. Kakas, A.C.: Viable Non-monotonic Applications. Proceedings of the ECAI-96
Workshop on ”Integrating Non- monotonicity into Automated Reasoning Systems”,
Budapest, 1996.

4. Kakas, A.C., Kowalski, R.A., Toni, F. : Abductive Logic Programming., Journal of
Logic and Computation, 2(6), 719-770, 1993.

5. Paul, G. : Approaches to abductive reasoning: an overview. Artificial Intelligence
Review, 7, 109-152, 1993.

6. ECLiPSe User Manual. ECRC, Munich, Germany, 1994.

7. Kakas, A.C., Michael, A..: Applications of Abductive Logic Programming: a case for
Non- monotonic reasoning. University of Cyprus Technical report, TR-97-3, 1997.

8. Sadeh, N..: Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.
Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, 1991.

https://www.researchgate.net/publication/2468446

