
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2468446

ACLP: Flexible Solutions to Complex Problems

Article  in  Lecture Notes in Computer Science · July 2000

Source: CiteSeer

CITATIONS

17
READS

140

2 authors:

Antonis C. Kakas

University of Cyprus

255 PUBLICATIONS   6,221 CITATIONS   

SEE PROFILE

Costas Mourlas

National and Kapodistrian University of Athens

124 PUBLICATIONS   923 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Antonis C. Kakas on 30 May 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2468446_ACLP_Flexible_Solutions_to_Complex_Problems?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2468446_ACLP_Flexible_Solutions_to_Complex_Problems?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Cyprus?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costas-Mourlas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costas-Mourlas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-and-Kapodistrian-University-of-Athens?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costas-Mourlas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonis-Kakas?enrichId=rgreq-70491a09a73d96db0ad857100ff07abf-XXX&enrichSource=Y292ZXJQYWdlOzI0Njg0NDY7QVM6MTAxMjk3MDU1MzM4NTAyQDE0MDExNjI1MDgzNjY%3D&el=1_x_10&_esc=publicationCoverPdf


ACLP: Flexible Solutions to Complex ProblemsA.C. Kakas and C. MourlasDepartment of Computer Science, University of Cyprus75 Kallipoleos str., CY-1678 Nicosia, Cyprusfantonis, mourlasg@turing.cs.ucy.ac.cyAbstract. In this paper we present a new system for non-monotonicreasoning performed using abduction. The system, called ACLP, is aprogramming language based on the framework of Abductive and Con-straint Logic Programming (ACLP) which integrates abduction and con-straint solving in Logic Programming. It is build on top of the ECLiPSelanguage for Constraint Logic Programming (CLP) interfacing (and ex-ploiting) appropriately the non-monotonic reasoning of abduction withthe specialized constraint solving of the CLP language. ACLP is intendedas a programming language that extends the underlying CLP language inwhich using NMR (in this case abduction) together with constraint solv-ing it is possible to develop exible solutions that are computationallyviable in the real-life domain.We present the basic theory of ACLP that underlies the system, the mainfeatures of the ACLP language and how it can be used when developingapplications. We then report on some experiments performed in order totest the cost of the use of the ACLP system as compared with the directuse of the (lower level) constraint solving framework of CLP on whichthis is build. These experiments provide evidence that the non-monotonicframework of ACLP does not compromise signi�cantly the computationale�ciency of the solutions thus con�rming the computational viabilityof the framework for the development of exible solutions to real-lifeapplications.1 IntroductionNon-monotonicity enhances the expressive power of a representation frameworkallowing high-level representations of problems close to their natural speci�ca-tion. The modeling of the problems is thus more direct, modular and faithful.As a result of this, many problems in Arti�cial Intelligence and other areasof computer science have been easily captured within di�erent non-monotonicframeworks. Despite this clear need of non-monotonicity the number of real-lifeapplications of non-monotonic reasoning is very small. One of the main reasonsfor this is the relative computational ine�ciency of solutions based on non-monotonic representations.It has been argued [1], [2], [3] that one way to address this problem is toview the role of non-monotonic reasoning (NMR) as that of providing an ef-fective automatic reduction of high-level problem representations and goals tolower level computational problems, of a general problem independent form,



whose solutions would solve the original high-level problem goal. It is thus pro-posed that NMR should be appropriately integrated with specialized constraintsolvers for lower-level problem independent domain constraints. Such integratedframeworks will be able to o�er solutions of application problems that (i) cane�ectively combine high-level representation problems with the e�ciency of thespecialized constraint solving to produce computationally viable solutions and(ii) o�er a high degree of exibility in the development of the applications ableto respond to their specialized and dynamically changing needs.In this paper, we present a new system for non-monotonic reasoning per-formed using abduction. The system, called ACLP, is a programming languagebased on the framework of Abductive and Constraint Logic Programming (ACLP)[2] which integrates abduction and constraint solving in Logic Programming. Itis build on top of the ECLiPSe language [6] for Constraint Logic Programming(CLP) interfacing (and exploiting) appropriately the non-monotonic reasoningof abduction with the specialized constraint solving of the CLP language. Theintended use of ACLP system is not to solve computational hard problems ofNMR but rather to o�er a modeling environment that supports NMR for thedevelopment of modular and exible applications. ACLP is therefore intendedas a programming language that extends the underlying CLP language in whichusing NMR (in this case abduction) together with constraint solving it is pos-sible to develop incrementally exible solutions that are computationally viablein the real-life domain.Abductive reasoning has been shown to be appropriate for formulating dif-ferent application problems in AI e.g. Diagnosis, Planning, Natural LanguageUnderstanding and others such as Database Updates. Also abduction has beenproved suitable for capturing logically di�erent kinds of inferences such as ex-planation, non- monotonic and default reasoning, knowledge assimilation andbelief revision (see the recent surveys [4, 5]). This versatility of abduction as areasoning paradigm together with the high level expressivity that it allows arethe primary reasons for its success in formulating so many di�erent problems.We therefore take it as given that the ACLP framework and system are appro-priate for tackling NMR problems and applications and concentrate here on theissue of the (relative) computational e�ectiveness of the system.Two groups of experiments have been performed with ACLP. One to testthe cost of the use of the ACLP system as compared with the direct use ofthe (lower level) constraint solving framework of CLP on which ACLP is build.The other group of experiments aimed to illustrate the high level expressivity ofACLP and the exibility that it can provide in adapting a program in ACLP tochanges in the problem de�nition. These experiments provide evidence that thenon-monotonic framework of ACLP does not compromise signi�cantly the com-putational e�ciency of the solutions thus con�rming the computational viabilityof the framework for the development of exible real-life applications.In the next section we present the theoretical foundations of ACLP and itsmain computational model. In section 3, we briey discuss its implementationand its main features when used as a programming language for the development



of applications. In section 4, we present the experiments carried out to test theviability and usefulness of ACLP.2 The ACLP frameworkThe ACLP system is designed as a programming language based on the ACLPframework of integrating Abductive and Constraint Logic Programming [2]. Thisintegration of Abductive Logic Programming (ALP) and Constraint Logic Pro-gramming (CLP) is based on the view that they can be both understood withinthe same conceptual framework of hypothetical reasoning. The satisfaction of agoal, in either framework, is understood conditionally on a set of hypotheses,abducible assumptions for ALP or constraints for CLP, which is satis�able un-der a special theory. For the case of ALP this theory is a set of problem speci�cintegrity constraints whereas for the case of CLP this is a built-in problem in-dependent constraint theory. An important observation when integrating thesetwo frameworks is that the interaction between these two types of hypothesesis non-trivial and indeed they can be strongly correlated to each other. For anabducible hypothesis 9Xab(X) we may also require that the variable(s) X isrestricted through some set C of constraints in the constraint domain of CLP. Ine�ect, the hypothesis that we need is 9X(ab(X); C(X)) , showing the non-trivialinteraction of the two frameworks.2.1 The Language of ACLPGiven an underlying framework ofCLP (R), an abductive theory or programin ACLP is a triple hP;A; ICi where:{ P is a constraint logic program in CLP (R) consisting of rules of the formp0(t0) c1(u1); : : : ; cn(un)kp1(t1); : : : ; pm(tm)1 where pi are predicate sym-bols, ci are constraints in the domain R and ui; ti are terms of R.{ A is the set of abducible predicates, di�erent from the constraints in R.{ IC is a set of integrity constraints, which are �rst order formulae over thelanguage of CLP (R).A goal, G, has the same form as the body of a program rule whose variables areas usual understood as existentially quanti�ed.An ACLP theory or program thus contains three types of predicates: (i)ordinary predicates as in standard LP, (ii) constraint predicates as in CLP and(iii) abducible predicates as in ALP . The abducible predicates are normally notde�ned in the program and any knowledge about them is represented eitherexplicitly or implicitly in the integrity constraints IC.1 Here the symbol k is used to separate the constraint conditions from the programpredicate conditions in the conjunction of the body of the rule.



The abducibles are seen as high-level answer holders for goals (or queries) toour program carrying their solutions. An answer, �, for a goal, G, is a set ofassumptions of the form:{ ab(d), where ab 2 A and d 2 domain of R.{ 9X(ab1(X); : : : ; abn(X); C(X)); where ab1; : : : ; abn 2 A and C(X) is a setof CLP (R) constraints.The integrity constraints express high-level properties that must hold by anyset of abducible assumptions or in other words by any solution (or answer) ofa goal for this to be accepted. In this way, using the integrity constraints we(the user) can express requirements of the problem in an explicit and high-leveldirect way. More importantly this means that we can separate (isolate) the issueof validity of the solution in the integrity constraints IC from other issues ofthe problem representation (such as the basic structure of the problem or thequality of the solution) in the program P . This separation can be very useful inthe overall development of an application.2.2 Declarative Non-monotonic Semantics of ACLPThe (non-monotonic) semantics of ACLP is inherited from that of ALP andabduction. An answer for a goal G is correct if it forms an abductive explanationfor G. Given a theory hP;A; ICi and a goal G, an answer � is a solution of Gi� there exists at least one consistent grounding of � (in R) and for any suchgrounding (labelling) , �g :{ P [�g entails Gg , and{ P [�g satis�es the ICwhere Gg denotes a corresponding grounding of the goal G.Due to lack of space we can not elaborate here on the details of the corre-sponding grounding and the formal semantics of the integrity constraints (see[2]). Informally, we can consider the integrity constraints as sentences that mustbe entailed by the program together with the abductive hypotheses (P [�g) for�g to be a valid set of hypotheses.2.3 Computational model of ACLPA computation in the ACLP framework consists of two interleaving phases,called abductive and consistency phases. In the abductive phase, hypotheses onthe abducible predicates are generated, by reducing the goals, and added to aset of abductive assumptions �. The consistency phase checks whether thesehypotheses are an allowed addition to the assumption set in the sense that theintegrity constraints can remain satis�ed by this addition. Together with thisassumption set a constraint store C of CLP constraints is also generated. Thisconstraint store can grow in both phases of the computation provided that itremains satis�able throughout the computation. A constraint solver is used to



decide on the satis�ability of this store when necessary. The satis�ability of Cin turn a�ects back the overall abductive computation. The following simpleexample illustrates the ACLP computation.Example 1. Consider the following ACLP theory and goal G0:P = fp(X) X > 2 k q(X); a(X)q(X) X > 4; X < 10 k []g,IC = f:(X > 8 k a(X))g,G0 = p(X); where \a" is the only abducible predicate.In an abductive phase, the initial goal G0 will resolve against the �rst andsecond clauses to obtain the new goal G1 = X > 2; X > 4; X < 10 k a(X):We then proceed to abduce 9Xa(X) by adding a(x) (x here is a name for thisexistential variable) to the assumption set �0. The initially empty constraintstore C0 is extended to the set fx > 2; x > 4; x < 10g . A consistency phaseis then invoked in order to check the consistency of the assumption a(x). Thiswill resolve with the integrity constraint in IC to give the goal (x > 8 k []).This goal must fail. As there are no literals left in the goal, the only way tofail is to make the local set of constraints fx > 8g unsatis�able. This is doneby assuming x � 8 and adding it to the global constraint store C0. The newconstraint store C1 = fx > 2; x > 4; x < 10; x � 8g remains satis�able andreduces to C 01 = fx > 4; x � 8g. Therefore the computation succeeds with the�nal result 9X(a(X); X > 4; X � 8), which is a solution to the initial goal G0.In this example the constraint solver of CLP is used to check for the satis-�ability of C0 and C1, solve the problem of making the local set of constraintsfx > 8g unsatis�able and to reduce C1 to C 01. In general, the interface ofabduction to the CLP (R) specialized constraint solver is as follows.{ check the satis�ability of and reduce (or solve) the constraint store at eachstep in the abductive phase{ in a consistency phase expand the constraint store in a way such that (i) itremains satis�able and (ii) other constraints local to the consistency phasebecome unsatis�able.The constraint solver is essentially a black box, transparent to the abductivetheory, that is consulted during the overall abductive computation with thetwo speci�c tasks given above. Note that the �rst task is in fact the standardinterface to the constraints solver in CLP . Note also that in the second taskthe constraint solver is used actively towards satisfying the top level goal byexpanding the constraint store.E�ectively, the overall pattern of computation can be seen as a reductionthrough abductive reasoning of the high level goal and abductive theory to a setof domain constraints of the underlying CLP . From the perpective of the CLPthe domain constraints that are needed to solve the high-level goal are generateddynamicaly through an unfolding of the "relevant" part of the program P andintegrity constraints IC. Abduction provides the high-level "pattern" of the



solution whereas the constraint solver computes the more speci�c but equallyimportant details of the solution.3 Language Features and ImplementationAs descibed in the previous section a program in ACLP has three modules:{ Module 1: Contains a standard ECLiPSe program{ Module 2: Constains a set of declarations of abducible predicates in theform of ECLiPSe facts as: abducible predicate(predicate name=arity):{ Module 3: constains a set of integrity constraints written as ECLiPSe pro-gram facts in the form: constraint((head : � body)):In the current implementation of ACLP the integrity constraints are re-stricted to be Horn clauses where the head could be empty and where at least oneabducible condition must appear in the body of the constraint. Once all threemodules have been loaded the program is executed by calling at the ECLiPSelevel: aclp-solve(goal, initial-hypotheses, output-variable){ goal is an ordinary ECLiPSe goal,{ initial-hypotheses is a list of abducible hypotheses, and{ output-variable is an ECLiPSe variable.The output-variable returns a list of abducible hypotheses, with their domainvariables instantiated to speci�c values in their domain,containing the initial-hypotheses and which is a solution of the goal. Normally, the list of initial-hypotheses is empty but this is not necessary as we may want to �nd solutionsto a goal that necessarily contain some hypotheses.3.1 ACLP ApplicationsIn developing an application with ACLP an important feature of the ACLP lan-guage is the fact that we can de�ne for each problem its own problem speci�cabducibles. These play the important role of answer holders which have highersemantic meaning than simply that of a logical variable (the usual answer holderin LP and CLP). This ability to have high-level answer holders helps in develop-ing high-level and exible programs as we can use them directly to manipulatethe solution and represent explicitly properties of the solution.Another important feature of the ACLP language is the separation it allowsbetween the program P and the integrity constraints IC. The general problemrepresentation can be divided in two main parts, the basic model of the problemin P and the representation (speci�cation) of what constitutes a valid solutionin the integrity constraints IC.Separating the issue of validity in the constraints from other issues (e.g. qual-ity of a solution) in the model can facilitate the development of applications. Itcan help in an easier and more modular development especially when we want



to make the model more detailed or to change the requirements on the solution.The fact that these two tasks are now decoupled and can be carried out inde-pendently is very bene�cial in the overall development of an application. It ispossible to incrementally re�ne the model to improve the quality of the solutionwithout a�ecting its validity (which is always ensured by the integrity constraintsin IC). In addition, we can experiment with di�erent design alternatives in themodeling which may improve the quality of the solutions. For example, opti-mality algorithms can be included in the model of the problem. This gives usthe possibility of a�ecting the search for the solution in order to increase thecomputational e�ectiveness of the application system. Moreover, it is possibleto exploit natural structures of the application problem in order to build in P amore informed model of the problem that again can result in improvements onthe e�ectiveness of the system. Further details and discussion on this propertyof separating the issue of validity from that of the optimality of the solution inthe context of schedulling applications can be found in [7].3.2 ImplementationThe current version of the ACLP system has been implemented on top of theECLiPSe language as a meta-interpreter using explicitly the low-level constraintsolver that handles constraints over �nite domains (integer and atomic elements).The most di�cult task of the meta-interpreter is the management of the twointerleaving phases of abduction and consistency during a computation in theACLP framework. Since constraints can be imposed on domain variables not onlyduring the generation of an abducible assumption but also during consistencychecking, there is a need for (i) dynamic generation and management of low-levelCLP constraints (ii) management of the domain variables.The implementation contains a module for negating the CLP constraintsfound in the body of an integrity constraint and sending them to the ECLiPSeconstraint solver to be satis�ed together with the other constraints already set.A binding environment is also constructed during the execution of the meta-interpreter where the domain variable bindings and the constraints attached tothese variables are stored. An explicit binding mechanism is implemented tohandle the attachement of new constraints to variables and the linking betweendi�erent constraints that are imposed on the same domain variable at di�erentparts of the computation.4 ExperimentsIn this section, we present some experiments that we have carried out in orderto test the computational viability of the ACLP system and to illustrate its highlevel expressivity and exibility.These experiments rest on the premise that ACLP will be computationallyviable for real-life applications if its performance is comparable with that of theunderlying CLP language or in other words if it does not degrade signi�cantly



the performance of the underlying language (which we assume can be used forreal-life applications). For this purpose we have selected some standard com-putationally intensive problems and compared the performance of ACLP withthe performance of the underlying language of ECLiPSe on the same problems.We emphasize that these experiments are designed to test explicitly the com-putational e�ectiveness of ACLP, in the sense mentioned above, and not itssuitability for solving representing NMR application problems such as problemsof diagnosis, planning etc which we take as given.4.1 Increasing the Size of the ProblemThe �rst set of experiments designed to test the computational viability of theproposed system, are based on the job shop scheduling problem. In general, weneed to schedule n jobs on m machines where each job is a request for thescheduling of a set of tasks with a particular order. Each job has a speci�edrelease time after which its execution can start and has to complete its workbefore a speci�ed deadline. In addition, the schedule must satisfy other basicconstraints such as the precedence constraints that de�ne in which order thedi�erent tasks of a job should be carried out and the capacity constraints thatprevent resources from being allocated to more tasks than they can process at onetime (resource capacity). Other constraints speci�c to the particular applicationmay be needed, making the problem more di�cult to solve.In ACLP the precedence and resource capacity constraints can be representedwith the following integrity constraints in IC:constraint((:�start(J; T1; R1; S1); T2 is T1� 1; start(J; T2; R2; S2);duration(T2; D2);S1#< (S2+ D2))):constraint((decoupled(T1;S1;T2; S2) : �start(J1; T1; R; S1);start(J2; T2; R;S2);T1= n = T2)):where start(J; T;R; S) denotes that task T of job J starts execution at time Son resource (machine) R, and is an abducible predicate. The program P of theACLP job-shop scheduling theory is a simple representation of the basic featuresof the problem that generates the abductive hypotheses start(J; T;R; S) for eachjob and task from some top level goal. It also contains the de�nition of auxiliarypredicates that are used in the integrity constraints e.g. decoupled=4.The core scheduling problem that was used in our experiments has 20 jobswith 5 tasks each, (hence a total of 100 tasks) sharing 10 resources. It wasconstructed from the set of problems de�ned in [8] by putting together two ofthese problems.The second set of our experiments is based on the well-known N queenspuzzle, where we have the requirement to place N queens on a N-by-N rectangularboard so that no two queens are on the same horizontal, vertical or diagonal line.The ACLP program contains the integrity constraint:constraint((: �pos(R1; C1); pos(R2;C2);attack(R1;C1;R2;C2))):



with pos(Row;Column) an abducible predicate and where the de�nition ofattack is the usual one given in the program P . The full ACLP programs canbe found in an associated technical report.The ACLP implementations of these problems were tested against corre-sponding implementations directly in ECLiPSe.
6 8 10 12

Board Size (N)

0

50

100

150

200

250

300

T
im

e 
(s

ec
) ECLiPSe

ACLPFig. 1. All solutions, N-queensproblem using ECLiPSe and ACLP 0 20 40 60 80 100

Board Size (N)

0

5

10

15

20

25

30

T
im

e 
(s

ec
) ECLiPSe

ACLPFig. 2. One solution, N-queensproblem using ECLiPSe and ACLP
0 2 4 6 8 10 12 14 16 18 20

Number of Jobs (N)

0

1

2

3

T
im

e 
(s

ec
)

ECLiPSe

ACLPFig. 3. One solution, job shop scheduling problem using ECLiPSe and ACLPFigure 3 displays the performance of these two implementations with respectto the size of the job shop problem ranging from 1 job (5 tasks) to 20 jobs (100tasks). This �gure indicates that the performance of the ACLP implementationis comparable with that of ECLiPSe, since in every size of the problem, theECLiPSe implementation is about two times faster than the one on ACLP. This isa constant factor of di�erence that does not increase with the size of the problem.It is worth noting here that the ACLP system is built on top of ECLiPSe andconsequently a big fraction of the performance loss is due to the penalty paid torun the code of the meta-interpreter. As we will also see in the next subsectionthe constraints are expressed in a form closely to their natural speci�cation inthe ACLP programs whereas more e�ort was necessary for encoding the sameconstraints directly in ECLiPSe.Similar results were taken from the execution of the N-queens problem, whereonly one solution for the placement of the queens was required from both the



implementations. We compared the execution times for di�erent board sizesranging from 7 to 115. Figure 2 presents the results where we can see that ACLPis still performing with times comparable to the ones achieved by the ECLiPSeimplementation. This di�erent is a constant factor of 4 to 5 times faster forECLiPSe.Finally, Figure 1 displays the run-time costs of the N-queens problem, whereall solutions are required for di�erent board sizes ranging from seven to twelve.The performance of the ACLP, as it can be observed follows closely the perfor-mance of the ECLiPSe implementation.The main di�erence between an ACLP based implementation and a standardCLP implementation is concentrated on the way the constraints are expressed.In the ACLP system, constraints can be represented directly from its naturalspeci�cation in a declarative statement. On the contrary, using a standard CLPsystem, it is �rst necessary to extract the constraints from the problem speci�-cation, and then to formulate this set of constraints appropriately. In the ACLPframework this (programming) time consuming process has been reduced consid-erable. The penalty paid concerning the performance of the system is due to thefact that now during the computation, the low level constraints are constructedfrom the higher level integrity constraints, formulated to a set of constraint goalsand then transmitted to the underlying specialized constraint solver of ECLiPSe.4.2 Increasing the Complexity of the ProblemIn order to illustrate the expressive power of the proposed system for the devel-opment of complex applications, we considered the addition of new constraintsto the job shop scheduling problem. We studied the ability of the ACLP systemto represent these constraints and compared both implementations (the ACLPand the ECLiPSe version) not only according to their performance results butalso in their ability to represent these constraints and their exibility in changingthe problem requirements.Assume that we are given an extra requirement on the initial core job shopscheduling problem which says that: for a speci�c task �0, if this starts after aspeci�c time t0 then this task has to be executed last (i.e. no other task canstart execution after the task �0). This is represented in our system by the singleintegrity constraint (1) (for the speci�c case of �0 = 14 and t0 = 21)constraint((: �start(1; 14; R0;S0); start(J; T;R;S); T= n = 14;S0# > 21; S# > S0)): (1)This constraint was implemented also in the ECLiPSe language. The perfor-mance of each approach is presented in Table 1 on the second column namedConstr1, whereas the �rst column presents the results on the underlying coreproblem of a �xed size . The ACLP version is still slower than the ECLiPSeversion, but without any signi�cant computation overhead.An alternative new requirement to the problem that was examined statesthat: after the end of a speci�c task �1 and for a speci�c resource r1, no other



task can start execution on that resource before the end of a time interval ti.This is represented in the ACLP system by the single integrity constraint (2),(for the speci�c case of �1=23, r1 = 1 and ti =20). The performance of the twoimplementations is shown in the column named Constr2 of the Table 1.constraint((:�start(J; T; 1; S); start(2; 23;1;Sd);duration(23; Dd);S# > Sd; S# < Sd+ Dd+ 20)): (2)We must point out that in both these cases of adding the constraints (1) and(2) a considerable programming e�ort was required in order to achieve theseexecution times by ECLiPSe.Consider now the requirement that if at least two jobs start their executionin a speci�c time interval (ts; te) using a speci�c resource ri , then no othertask can start execution in the interval (te; te+ td). The resource ri must have arest period. This is represented in ACLP by the integrity constraint (3), whereri = 0, (ts; te) = (0; 32) and td =10. The execution time of the ACLP system isshown in the column named Constr3 of Table 1. Due to the much needed e�ortto implement this directly in ECLiPSe we did not carry this out!constraint((: �start(J; T; 0; S);start(J1;T1;0; S1); start(J2;T2;0;S2);T1 = n = T2; 0# < S1; S1# < 0+ 32;0# < S2; S2#< 0+ 32; S# > 32; S#< 32+ 10:)): (3)Assume now that we are given a new requirement on the initial problemwhich says that: if any task �i is using the resource ri then the related with riresource rj has to be idle till the end of �i. This is represented in ACLP by theintegrity constraint (4) and the performance of its implementation is presentedin Table 1. Again this constraint was not implemented directly in ECLiPSe.constraint((: �start(J1; T1; R1;S1);start(J2;T2;R2;S2); T1= n = T2;related(R2; R1); duration(T2;D);S2#< S1; S1# <= S2+ D)): (4)The previous constraint required that no task could start on resource R1 ata time when the related resource R2 is busy. Consider now the \dual" constraintrequiring that no task can begin on resource R1 at a time when the relatedresource R2 is idle. In other words, if a task starts at time T on resource R1then the related resource R2 must be working at this time T . This requirementis represented in ACLP by the following integrity constraint (5):constraint((working(R2;S) : �start(J; T; R1; S);related(R2;R1))): (5)where working/2 is de�ned in the program of the ACLP theory as follows:working(R,S) :-select_task(Ja,Ta,R),start(Ja,Ta,R,Sa),duration(Ta,Da),S #> Sa, S #< Sa + Da.



Performance Measurements (in secs)System Standard Con�guration Constr1 Constr2 Constr3 Constr4 Constr5ACLP 0.90 1.04 0.94 1.34 3.45 1.62ECLiPSe 0.42 0.68 0.42 * * *Table 1. Performance Measurements as the Complexity of the Problem IncreasesThe e�ect of this constraint is that whenever a task T is scheduled on resourceR1 the system dynamically schedules in the consistency phase of task T anothertask Ta on the related resource R2 to ensure that this constraint is satis�ed.The execution time of this constraint is shown in the last column of Table 1.Our conclusions based on these results can be summarized as follows:1. The performance of the ACLP system is comparable with that of the un-derlying CLP language. Much of the execution time of a program writtenin ACLP is spend for the run of the meta-interpreter code. As a result, afull low-level implementation of the proposed system seems a promising andcomputational e�ective programming environment.2. The expressive power of ACLP is higher than that of a standard CLP system,with greater exibility for problems with changing speci�cations.We note that as with ECLiPSe and other CLP languages, the performanceof the ACLP system can sometimes be sensitive to the order in which the con-straints are written (and hence to the order which the meta-interpreter considersthese constraints).Finally, we also mention that a simpler implementation of ACLP that doesnot exploit fully the integration of NMR and constraint solving has already beenused to develop two real-life applications: a university timetabling problem andan airline crew-rostering problem [7].References1. Ginsberg, M.L. : Do Computers Need Common Sense?. Proceedings of the FifthInternational Conference on Knowledge Representation, 1996.2. Kakas, A.C., Michael, A.. : Integrating abductive and constraint logic programming.Procedings of the Twelfth International Conference on Logic Programming, Tokyo1995.3. Kakas, A.C.: Viable Non-monotonic Applications. Proceedings of the ECAI-96Workshop on "Integrating Non- monotonicity into Automated Reasoning Systems",Budapest, 1996.4. Kakas, A.C., Kowalski, R.A., Toni, F. : Abductive Logic Programming., Journal ofLogic and Computation, 2(6), 719-770, 1993.5. Paul, G. : Approaches to abductive reasoning: an overview. Arti�cial IntelligenceReview, 7, 109-152, 1993.6. ECLiPSe User Manual. ECRC, Munich, Germany, 1994.7. Kakas, A.C., Michael, A.. : Applications of Abductive Logic Programming: a case forNon- monotonic reasoning. University of Cyprus Technical report, TR-97-3, 1997.8. Sadeh, N..: Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, 1991.
View publication stats

https://www.researchgate.net/publication/2468446

